SERVIÇO PÚBLICO FEDERAL

MEC / SETEC

CIDADES DE PELOTAS E CHARQUEADAS INSTRUÇÕES GERAIS

- 1 Este caderno de prova é constituído por 40 (quarenta) questões objetivas.
- 2 A prova terá duração máxima de 04 (quatro) horas.
- 3 Para cada questão, são apresentadas 04 (quatro) alternativas (a b c d).
 APENAS UMA delas responde de maneira correta ao enunciado.
- 4 Após conferir os dados, contidos no campo Identificação do Candidato no Cartão de Resposta, assine no espaço indicado.
- 5 Marque, com caneta esferográfica azul ou preta de ponta grossa, conforme exemplo abaixo, no Cartão de Resposta único documento válido para correção eletrônica.

- 6 Em hipótese alguma, haverá substituição do Cartão de Resposta.
- 7 Não deixe nenhuma questão sem resposta.
- 8 O preenchimento do Cartão de Resposta deverá ser feito dentro do tempo previsto para esta prova, ou seja, 04 (quatro) horas.
- 9 Serão anuladas as questões que tiverem mais de uma alternativa marcada, emendas e/ou rasuras.
- 10 O candidato só poderá retirar-se da sala de prova após transcorrida 01 (uma) hora do seu início.

BOA PROVA!

CONHECIMENTOS ESPECÍFICOS

1. Foram preparadas duas soluções: uma de ácido clorídrico com potencial hidrogeniônico (pH) igual a 3 e outra com soda cáustica, com potencial hidroxiliônico (pOH) igual a 4.

Considerando-se que foi transferido 20 mL da solução ácida para um erlenmeyer, qual a quantidade, em mL, da solução básica preparada será necessária para ocorrer uma neutralização total?

- a) 15
- b) 67
- c) 160
- d) 200
- 2. Dada a seguinte equação química:

$$Cr_2O_7^{-2} + C_2H_5OH \rightarrow Cr^{+3} + CO_2$$

Considerando que, essa reação, ocorre em meio ácido, a soma dos menores coeficientes inteiros possíveis na equação completa é igual a

- a) 09.
- b) 19.
- c) 36.
- d) 66.
- **3.** Os átomos X e Z apresentam os seguintes conjuntos de números quânticos para o elétron de diferenciação, descritos no quadro a seguir:

Átomos	Números quânticos													
	n	1	m	s										
X	3	0	0	+1/2										
Z	4	1	0	+1/2										

Considerando o valor $\pm 1/2$ como o spin do segundo elétron num orbital, pode-se afirmar que

- a) o composto formado por ambos átomos tem fórmula X₂Z.
- b) o elemento X possui 2 elétrons de valência e o elemento Z possui 5 elétrons.
- c) os elementos X e Z quando combinados, respectivamente, com o íons OH⁻ e H⁺ formarão uma base fraca e um hidrácido forte.
- d) todos os sais formados por X ou Z são solúveis.
- **4.** Alguns elementos químicos, tais como Boro, Fósforo e Silício, formam ácidos com diferentes graus de hidratação.

Os compostos ácido pirossilícico, ácido metabórico e ácido ortofosforoso apresentam, respectivamente, as seguintes fórmulas moleculares:

- a) H_2SiO_3 , HBO_2 e H_3PO_2 .
- b) $H_6Si_2O_7$, HBO_2 e H_3PO_3 .
- c) $H_6Si_2O_7$, $H_4B_2O_5$ e H_3PO_2 .
- d) H_2SiO_3 , $H_4B_2O_5$ e H_3PO_3 .

5. Um recipiente evacuado, com capacidade de 20L, é usado para a reação entre 0,7 mol de gás hidrogênio com 0,7 mol de iodo gasoso a 450°C.

Considerando que, para um estado padrão de 1 mol/K, a constante de equilíbrio em função das pressões parciais (Kp) é 50, qual a quantidade de matéria de I_2 está em excesso no equilíbrio?

- a) 0,008
- b) 0,16
- c) 0,30
- d) 0,54
- **6.** Uma corrente de 10,0 A é utilizada para cobrear uma superfície, a partir de uma banho contendo de solução CuSO₄. A eficiência da corrente com relação à formação de Cu é 70,0%.

Quantos átomos de cobre serão depositados por hora?

- a) 0.78×10^{23}
- b) $1,56 \times 10^{23}$
- c) $2,10 \times 10^{23}$
- d) 3.01×10^{23}
- 7. Você está se preparando para acampar e precisa levar gás butano para aquecer água. Considere que, para aquecer 1 L de água de 17°C até a temperatura de ebulição (ignorando as perdas de calor), é necessário obter 400 kJ de calor e que a equação termoquímica de combustão do butano é: $2 C_4 H_{10 (g)} + 13 O_{2 (g)} \rightarrow 8 CO_{2 (g)} + 10 H_2O$ (I) $\Delta H^\circ = -5756 \text{ kJ}$

A quantidade, em massa (g), de butano necessária para aquecer a água será aproximadamente igual a

- a) 4
- b) 6
- c) 8
- d) 10

- **8.** Com relação às ligações químicas e às diferentes alterações moleculares, ocorrentes em diversas substâncias, são feitas as seguintes afirmativas:
 - I. De acordo com a teoria de repulsão dos pares eletrônicos da camada de valência, as moléculas SO_2 , SF_4 e XeF_4 apresentam geometria angular, gangorra e quadrática planar, respectivamente.
 - II. Um cátion possui maior raio do que o átomo a partir do qual ele é formado.
 - III. Átomos em uma ligação dupla estão mais próximos do que aqueles unidos por ligação simples.
 - IV. As forças intermoleculares existentes entre partículas de substâncias sólidas moleculares são do tipo Van der Waals.
 - V. As moléculas N₂H₄, COCl₂ e PF₅ são todas apolares, formadas por ligações covalentes polares.
 - VI. A ligação de hidrogênio, também conhecida por ponte de hidrogênio, é um caso especial de força de dispersão de London e sua ocorrência está associada à ligação do elemento hidrogênio a outro elemento fortemente eletronegativo.
 - VII. Com base nas estruturas de Lewis, o comprimento da ligação CO é crescente nas espécies CO, CO_2 e CO_3^{-2} , respectivamente.

Estão corretas apenas as afirmativas

- a) I, III, IV e VII.
- b) II, IV, VI e VII.
- c) III, IV, Ve, VI.
- d) I, II, IV e V.
- **9.** Foi estudada, em diferentes condições de análise, a reação gasosa $xX + yY \rightarrow wW + zZ$ obtendo-se os seguintes resultados:

Concentração ir	Velocidade Inicial	
[X]	[Y]	(mol . L ⁻¹ . h ⁻¹)
3 x 10 ⁻³	3 x 10 ⁻³	9 x 10 ⁻⁵
6 x 10 ⁻³	3 x 10 ⁻³	36 x 10 ⁻⁵
6 x 10 ⁻³	6 x 10 ⁻³	144 x 10 ⁻⁵

De acordo com esses dados, a constante de velocidade da reação acima é igual a

- a) 6×10^{-2}
- b) 3×10^{-2}
- c) 1.2×10^{-1}
- d) 1.1×10^6
- 10. Com base na tabela de classificação periódica dos elementos, é correto afirmar que
- a) a eletroafinidade é a quantidade de energia absorvida no processo em que um elétron é adicionado a um átomo no estado gasoso.
- b) quanto maior o efeito de blindagem sofrido pelo elétron de valência, menor é o raio e o caráter metálico do átomo.
- c) o efeito do par inerte é a tendência de formar íons de cargas com duas unidades a menos que o esperado para o número do grupo.
- d) todos os elementos do bloco s são metais reativos que formam óxidos ácidos.

11.Considere dois recipientes A e B. No recipiente A, há 1L de solução aquosa de glicose 0,4M e no recipiente B, 1L de solução aquosa de cloreto de cálcio 0,4M (grau de ionização de 100%).

De acordo com as propriedades coligativas sobre as soluções dos recipientes A e B, é correto afirmar que

- a) a solução A entra em ebulição a uma temperatura maior que a solução B.
- b) as soluções A e B possuem o mesmo número de partículas de soluto.
- c) a solução B possui menor temperatura de congelamento, quando comparada com a solução A.
- d) nas soluções, se ambas forem separadas por uma membrana semipermeável, haverá osmose de B para A.
- **12.**Existem várias teorias que tentam explicar o comportamento dos ácidos e das bases, baseando-se em algum princípio geral. Entre elas, citam-se três, na seguinte ordem: teorias de Arrhenius (1887), de Brönsted-Lowry (1923) e de Lewis (1923).

Considerando o que disserta cada uma delas e a reação $HNO_3 + HBr \rightarrow H_2Br^+ + NO_3$, que ocorreu com ausência de solvente aquoso, pode-se classificar o cátion formado como

- a) uma base de Lewis.
- b) um ácido de Brönsted-Lowry.
- c) um ácido de Lewis.
- d) uma base de Brönsted-Lowry.
- 13.0 ácido nítrico pode ser obtido a partir da amônia por meio das seguintes etapas:

Etapa I:
$$6NH_{3(g)} + 15/2O_{2(g)} \rightleftharpoons 6NO_{(g)} + 9H_2O_{(g)}$$
 $\Delta H = -1359 \text{ kJ}$ Etapa II: $3NO_{(g)} + 3/2O_{2(g)} \rightleftharpoons 3NO_{2(g)}$ $\Delta H = -170 \text{ kJ}$ Etapa III: $3NO_{2(g)} + H_2O_{(g)} \rightleftharpoons 2HNO_{3(g)} + NO_{(g)}$ $\Delta H = -135 \text{ kJ}$

Considerando a etapa global de produção do ácido nítrico, totalmente ionizável em água e em equilíbrio, é correto afirmar que

- a) a mesma é favorecida por altas temperaturas e baixas pressões.
- b) a adição de H₂O_(q) aumenta o rendimento da reação.
- c) ocorre aumento da temperatura no ambiente externo.
- d) obtém-se 21 g de água por mol de HNO₃ produzido.
- 14.A sacarina é quinhentas vezes mais doce que o açúcar. É amplamente utilizada, apesar de ter um resíduo amargo e metálico. Ela sofre ionização em solução aquosa, conforme a equação abaixo:

$$HNC_7H_4SO_3_{(aq)} \rightleftharpoons H^+_{(aq)} + NC_7H_4SO_3_{(aq)}$$

Sabendo que se trata de um ácido fraco, com pKa = 2,32 a 25°C, qual é o pOH de uma solução 0,20 mol.L⁻¹ desse adoçante?

- a) 0.7
- b) 1,5
- c) 12,5
- d) 13,3

15.Niels Bohr foi um físico dinamarquês responsável por aperfeiçoar a teoria atômica proposta por Rutherford (sistema planetário), que se tornou falha para explicar, dentre outras coisas, o porquê de o elétron não perder energia durante os movimentos de rotação em torno do núcleo e colidir com ele, mas permanecer em órbita constante sem tornar o átomo instável. Baseando-se nos fundamentos de Max Planck, Bohr reformulou a teoria atômica estabelecendo alguns postulados.

Qual alternativa apresenta corretamente um dos postulados de Bohr?

- a) Não é possível determinar com precisão a posição e a velocidade instantâneas de uma partícula.
- b) Ao realizar um salto de um nível de energia mais externo para outro mais interno, o elétron emite energia.
- c) Para orbitais degenerados, a menor energia será obtida quando o número de elétrons com o mesmo spin for maximizado.
- d) Dois elétrons em um átomo não podem ter o mesmo conjunto de quatro números quânticos.
- **16.**A sacarose, $C_{12}H_{22}O_{11}$, decompõe-se em frutose e glicose, em solução ácida, de acordo com a lei da velocidade: v=k[sacarose], onde $k=0,208 \ h^{-1}$ a 25°C.

Quanto tempo, em horas, é necessário para que 87,5% da concentração inicial da sacarose se decomponha?

- a) 0,208
- b) 3,33
- c) 6,66
- d) 9,99
- **17.**Foram misturados 100 mL de uma solução aquosa, contendo 4,44 g de cloreto de cálcio, com 100 mL de solução aquosa que continha 6,80 g de nitrato de prata.

Considerando desprezível a quantidade de íons prata, em gramas, na solução após a precipitação, a massa mínima de precipitado que se formou foi de

- a) 1,72
- b) 2,87
- c) 3,44
- d) 5,74
- **18.**Considere a célula voltaica, em funcionamento, usando um eletrodo padrão de hidrogênio representada por: $\mathbf{Zn_{(s)}} \mid \mathbf{Zn^{+2}}_{(aq.)} \mid \mathbf{H^+_{(aq.)}} \mid \mathbf{H_{2(g)}}$.

Qual a alternativa correta?

- a) A massa do eletrodo anódico aumenta.
- b) O eletrodo de zinco é o polo positivo da célula voltaica.
- c) O teor de zinco solúvel decresce na semi-célula anódica.
- d) A pressão do gás H₂ é aumentada no compartimento catódico.

19.Uma determinada amostra seca pesando 12,3344 g foi totalmente dissolvida em solvente apropriado e avolumada a 200,0 mL. Desta solução, 25,0 mL foram tratados com reagentes específicos para conversão do metal manganês a íon permanganato e o volume corrigido volumetricamente para 100,0 mL. A solução resultante absorveu 35% do poder radiante, em comprimento de onda de 530 nm. Uma curva de calibração foi construída para a faixa de 0,002 a 0,01 mg L⁻¹ de manganês, de equação y = 27x - 0,0045, onde "y" corresponde a absorbância e "x" a concentração em mg L⁻¹ de manganês.

A concentração de manganês em mg kg⁻¹, na referida amostra, é

- a) 0,007
- b) 0,14
- c) 0,46
- d) 4,6
- **20.**Dentre os eletrodos de segunda classe, utilizados como referência, destaca-se o eletrodo de prata/cloreto de prata.

Considerando que o produto de solubilidade do AgCl é $1.8 \times 10^{-10} \text{ M}^2$ e que o potencial de redução da prata é de +0.80 V, qual a equação que expressa o potencial padrão de redução deste eletrodo?

- a) $E = 0.22 0.0592 \log [Cl^{-}]$
- b) $E = -0.22 0.0592 \log [Cl^{-1}]$
- c) $E = 0.22 + 0.0592 \log [Cl^{-1}]$
- d) $E = 0.80 0.0592 \log [Cl^{-1}]$
- **21.**A lei Beer pressupõe determinações quantitativas baseada na absorbância de soluções sob luz monocromática. A determinação com comprimento de onda (λ) desta Luz é feita no chamado λ máximo.

A definição desse valor tem como objetivo produzir um método que apresenta as seguintes características:

- a) Menor sensibilidade, maiores limites de detecção e quantificação e menores desvios da lei de Beer
- b) Maior sensibilidade, menores limites de detecção e quantificação e menores desvios da lei de Beer.
- c) Maior sensibilidade, maiores limites de detecção e quantificação e maior exatidão.
- d) Menor sensibilidade, menor faixa de linearidade e maiores desvios da lei de Beer.
- **22.**Em fotometria de chama são consideradas formas de interferência a autoabsorção, a ionização e a interferência química de ânions.

Quais são as formas de contornar estes problemas?

- a) Uso de elementos que se ionizem muito na chama, diluição da amostra, uso de elementos liberadores ou protetores.
- b) Diluição da amostra, uso de elementos liberadores ou protetores, uso de elementos que se ionizem muito na chama.
- c) Uso de elementos que se ionizem muito na chama, aumento da temperatura da chama, uso de elementos liberadores ou protetores.
- d) Diluição da amostra, uso de elementos que se ionizem muito na chama, uso de elementos liberadores ou protetores.

- **23.**Em cromatografia clássica, a eficiência de uma coluna, no processo cromatográfico, pode ser avaliada pelo número de pratos teóricos.
 - Qual alternativa sugere o conjunto de fatores que garantam um maior número de pratos teóricos?
- a) Coluna longa, empacotamento uniforme, base estreita do pico cromatográfico e alto tempo de retenção.
- b) Presença de canais preferenciais, colunas curtas, picos estreitos e curto tempo de retenção.
- c) Coluna curta, empacotamento uniforme, bases estreitas dos picos cromatográfico, curto tempo de retenção.
- d) Grande comprimento da coluna, presença de canais preferenciais, bases mais largas dos picos cromatográfico, alto tempo de retenção.
- **24.**O composto sulfato de amônio e ferro (II), conhecido com o sal de Mohr, é utilizado na preparação de padrões de ferro em amostras de solo e água. Para checar sua validade, foi realizada a calcinação de 2,0000 g de uma amostra hexa-hidratada do referido sal, que rendeu 0,3000 g de Fe_2O_3 .

A percentagem (%) de pureza da amostra calcinada foi de

- a) 31,9
- b) 52,1
- c) 73,5
- d) 95,0
- **25.**Em 250mL de amostra de água natural, o íon cálcio foi totalmente precipitado na forma de sal orgânico, utilizando-se solução de ácido oxálico. Esse sólido obtido foi coletado em papel filtro livre de cinzas, seco e aquecido até o rubro. O processo converteu quantitativamente o precipitado para óxido de cálcio que, depois de calcinado, foi resfriado em dessecador e pesado.

A massa do cadinho, mais o precipitado calcinado, foi de 24,5800g.

Sabendo-se que a massa do cadinho vazio é de 24,0000g, a concentração comum de cálcio na amostra foi de

- a) 2,32
- b) 1,66
- c) 0,58
- d) 0,73
- **26.**Quando o ácido oxálico é titulado com uma base forte sua curva de titulação (pH vs. volume gasto de titulante) apresenta duas zonas de tamponamento, decorrentes da presença de pares conjugados produzidos durante a reação de neutralização.

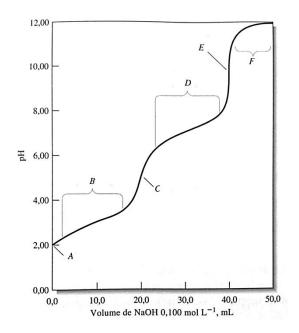
Com base no valor das constantes de ionização do referido ácido $(5,6 \times 10^{-2} \text{ M e } 5,2 \times 10^{-5} \text{ M})$, o potencial hidrogeniônico na região de tamponamento, onde os íons oxalato e monohidrogeno-oxalato estão presentes em quantidades equimolares, é

- a) 1,25
- b) 4,28
- c) 5,20
- d) 5,60

27.Nos diferentes métodos volumétricos, utilizados na quantificação de componentes químicos de amostras, são utilizados indicadores que possuem características específicas para a detecção do ponto final. Observe as colunas abaixo, onde na primeira, há uma lista de indicadores e na segunda, métodos volumétricos.

1 ^a coluna	2ª coluna
(A) Paranitrofenol	() Volumetria de precipitação - método de Fajans
(B) Fluoresceína	() Volumetria de neutralização
(C) Cromato de Potássio	() Complexometria por EDTA
(D) Negro de Eriocromo T	() Dicromatometria
(E) Difenilamina	() Volumetria de precipitação - método de Mohr
Fazendo-se a correspondência de sequência correta de letras é	a segunda coluna com a primeira, de cima para baixo, a
a) D, E, A, C e B.	
b) C, B, A, D e E.	
c) E, C, B, D e A.	
d) B, A, D, E e C.	

28.Um técnico em química foi orientado a preparar uma solução de HCl (36,5 g mol⁻¹), a partir do ácido concentrado (37,0% p/p e d = 1,19 g mL⁻¹). Desta forma, transferiu certo volume de HCl p.a para um balão volumétrico de 250 mL, avolumando-o com água destilada. A partir dessa solução realizou uma titulação, onde 45,0 mL consumiram 0,351 g de carbonato de sódio anidro.


O volume, em mL, que mais se aproxima da quantidade de ácido concentrado, utilizado para o preparo da solução de ácido clorídrico, foi de

- a) 0,4
- b) 1,5
- c) 2,6
- d) 3,0

29.A figura ao lado refere-se à titulação de um ácido fraco com uma base forte.

A partir da interpretação dos dados descritos na curva de titulação, qual alternativa está correta?

- a) Nos trechos B e D encontram-se pontos de equivalência.
- b) As constantes de ionização do ácido são aproximadamente $1,00 \times 10^{-3} \text{ M} \text{ e } 1,00 \times 10^{-7} \text{ M}.$
- c) Nos pontos C e E há zonas de tamponamento.
- d) A concentração inicial do ácido é 2,0 mol L⁻¹.

30.Uma solução padrão de nitrato de prata foi preparada dissolvendo-se 8,0 g de nitrato de prata p.a em balão volumétrico de 250mL. Durante sua padronização pelo método de Mohr, 42 mL reagiram com 0,3686 g de cloreto de sódio p.a (grau de pureza de 99,9%). Uma amostra pesando 9,5000 g, contendo cloreto de magnésio, foi diluída ao décimo e 10,0 mL dessa solução reagiram com 30,0 mL da solução padronizada.

O percentual, em massa, de magnésio presente na amostra é

- a) 22,6
- b) 31,6
- c) 45,1
- d) 56,7
- **31.**Uma amostra de 2,5 mL de HCl concentrado (densidade 1,19 g mL⁻¹) foi diluída com água a 250 mL. Dessa diluição, transferiu-se 20 mL para um erlenmeyer, que continha 25 mL de solução padronizada nitrato de prata 0,1000 mol L⁻¹ (com fator de correção (Fc) de 0,800), 5 mL de ácido nítrico 6 mol L⁻¹ e 75 mL de água destilada. Executou-se a filtração, juntamente com a lavagem do precipitado utilizando-se solução HNO₃ 1:100. Ao filtrado foi adicionado 1mL de sulfato férrico amoniacal 40% e procedeu-se a titulação, havendo um gasto de 2,0 mL de KSCN 0,1000 mol L⁻¹ (com Fc = 0,900).

O percentual em massa (%p/p) de ácido clorídrico contido na amostra é

- a) 28,9
- b) 37,0
- c) 40,0
- d) 42,0

32.Durante a padronização da solução de tiocianato de potássio 0,20 mol L⁻¹, pelo método de Volhard, foi colocado no erlenmeyer 50 mL de nitrato de prata 0,1000 mol L⁻¹ (Fc = 0,900), 5 mL de ácido nítrico 6 mol L⁻¹, 75 mL de água destilada e 1 mL de sulfato férrico amoniacal 40%. A mistura consumiu 26,0 mL de solução de KSCN.

O fator de correção da solução de tiocianato de potássio é

- a) 0,173
- b) 0,192
- c) 0,865
- d) 0,962
- **33.**Uma amostra comercial de 5,0 mL água oxigenada foi diluída em balão volumétrico de 200 mL. 25,0 mL dessa foi transferida para um erlenmeyer contendo 15,0 mL de H₂SO₄ 1:8. Na titulação com KMnO₄ 0,1000 eq.L⁻¹, descrita na reação abaixo, gastou-se 18,5 mL.

$$MnO_4^-(aq) + H_2O_2(aq) + H^+(aq) \rightarrow Mn^{2+}(aq) + O_2(g) + H_2O(l)$$

Qual o %p/v de H₂O₂ na amostra?

- a) 3,0
- b) 4,0
- c) 5,0
- d) 10,0
- **34.**Um volume de 10,0 mL de uma solução alcoólica é diluído em água até 500,0 mL (solução A). Uma alíquota de 10,0 mL da solução A é destilada e o etanol é coletado em 50,00 mL de uma solução ácida (H₂SO₄) contendo K₂Cr₂O₇ 0,1000 eq L⁻¹, onde é oxidado à ácido acético. O excesso de K₂Cr₂O₇ não reagido é titulado com 16,24 mL de Fe²⁺ 0,1006 eq L⁻¹, conforme descrevem as reações abaixo:

$$2Cr_2O_7^{2^-} + 3C_2H_5OH + 16H^+ \rightarrow 4Cr^{3^+} + 3CH_3COOH + 11H_2O \\ Cr_2O_7^{2^-} + 6Fe^{2^+} + 14H^+ \rightarrow 2Cr^{3^+} + 6Fe^{3^+} + 7H_2O$$

Qual a percentagem (%p/v) de etanol na amostra?

- a) 19,4
- b) 38,7
- c) 77,4
- d) 95,6
- **35.**Uma amostra de minério de ferro, pesando 950,0 mg, foi dissolvida em ácido e tratada para oxidar todo o ferro ao íon férrico. Após eliminar todo o excesso de agente oxidante, um excesso de KI foi adicionado. O I_2 liberado requereu 25,0 mL de $Na_2S_2O_3$ 0,08500 mol/L para titulação, conforme descrevem as reações abaixo:

$$2Fe^{3+} + 2I^{-} \rightarrow 2Fe^{2+} + I_{2}$$
 $I_{2} + 2S_{2}O_{3}^{2-} \rightarrow 2I^{-} + S_{4}O_{6}^{2-}$

Qual é a percentagem de ferro na amostra?

- a) 6,3
- b) 12,5
- c) 25,0
- d) 75,0

- **36.**Em Titrimetria alguns compostos químicos são frequentemente usados como soluções de referência, sendo denominados como padrões primários.
 - Para um composto químico ser considerado um padrão primário, deve apresentar qual característica?
- a) Possuir quantidade total de impureza que não exceda 1 a 2% de sua massa total.
- b) Ter baixa massa molar relativa.
- c) Ser parcialmente solúvel nas condições de trabalho.
- d) Executar uma reação estequiométrica e praticamente instantânea com a solução da amostra.
- **37.**O alumínio pode ser determinado por titulação com solução de sal dissódico de EDTA. Uma amostra de 1,00 g contendo Al_2O_3 requer 20,50 mL de solução de EDTA. Para titular 25,00 mL de uma solução 0,1000 mol L^{-1} de CaCl $_2$ se gastou 30,00 mL de EDTA.

Qual a percentagem de Al₂O₃ na amostra?

- a) 4,4
- b) 8,7
- c) 17,4
- d) 22,0
- **38.**Uma solução foi preparada adicionando-se 5,8000 g de ZnSO₄.7H₂O p.a em 200 mL de água destilada. Dessa transferiu-se 25 mL para um erlenmeyer contendo 175 mL de água destilada e solução tampão suficiente para dissolver o precipitado de Zn(OH)₂ formado e manter o pH em 10,0. Com o indicador apropriado, identificou-se o término da titulação em 20,0 mL gastos de EDTA 0,1 mol L⁻¹.

Qual é o percentual de pureza da amostra?

- a) 18,0
- b) 32,1
- c) 44,5
- d) 79,3

- **39.**Sempre buscando favorecer o processo de ensino-aprendizagem, os especialistas em educação debatem, experienciam e propõem diferentes formas de organização e difusão do conhecimento. Dentre essas formas, estão a interdisciplinaridade, a transdisciplinaridade e a multidisciplinaridade, cujos conceitos estão descritos abaixo:
 - I. Interdisciplinaridade consiste na cooperação das disciplinas, está fundada em genuínos grupos de trabalho e sua natureza é integrativa. Visa à mútua integração de conceitos, terminologias, métodos e dados em conjuntos mais vastos, repercutindo na organização do ensino e da pesquisa.
 - II. Transdisciplinaridade consiste na tentativa de ir além das disciplinas e sua índole é transgressiva, levando à quebra das barreiras disciplinares e à desobediência às regras impostas pelas diferentes disciplinas.
 - III. Multidisciplinaridade consiste na justaposição das disciplinas e sua natureza é essencialmente aditiva, não integrativa. De fato, pode-se dizer, a justaposição é mais do que colocar lado a lado, pois o que é buscado é a aproximação das disciplinas e o compartilhamento das informações.

Está(ão) correto(s) o(s) conceito(s)

- a) I apenas.
- b) II apenas.
- c) III apenas.
- d) I, II e III.
- **40.**Leia: "A avaliação dá grande flexibilidade de julgamento ao professor devendo ser praticada com responsabilidade. Um dos exemplos disso é o costumeiro "arredondamento de notas", que consiste em o professor aumentá-las ou diminuí-las segundo critérios por ele definidos e nem sempre explicitados. Esse arredondamento é feito com base nessa modalidade de avaliação (VILLAS BOAS, 2006)." Lemos, P. S.; Sá, L. P., 2013.

A que tipo de avaliação se refere o texto acima?

- a) Diagnóstica.
- b) Formativa.
- c) Informal.
- d) Mediadora.

	estável	()-N ²	Massa Atômica	Simbolo	Número Atômico		(223)	Ţ	87	133	င္ပ	55	85.5	공	37	39.1	~	19	23.0	<u> </u>	6.94	<u></u>	ယ	1.0	Ι -] -	
		() - Nº de massa do	tômica		Atômico		(226)	R a	88	137	Ba	58	87.8	ধ	38	40.1	ဂ္ဂ	20	Mg 24.3	12	9.01	Вe	4	2			
	L	d					Acthidos	Side do	89-103	d e	Saria do	57-71	88.9	≺	96	45.0	Sc	21	3								
(227)	8	Série d	139	a	57	Série d	(261)	자 각	104	178	Ĭ	72	91.2	Z	40	47.9	=	23	4								_
(232)	 8	Série dos Actinídios	140	ზ	85	Série dos Lantanídios	(262)	밁	105	181	Ta	73	92.9	Z	41	50.9	<	23	5								SAT
(231)	3 2	lios	141	Ρŗ	59	ídios	(263)	Sg	106	184	8	74	95.9	Mo	42	52.0	ς C	24	6								SIFI
238	8		144	ď	60		(262)	뫄	707	186	Re	75	(99)	С	43	54.9	3	25	7								CAÇ ssas a
(237)	<u> </u>		(147)	Pm	61		(265)	SH	108	190	S	76	101	굔	44	55.8	Fe	26	8								ASSIFICAÇÃO PERIÓDICA DOS Com massas atômicas referidas ao isótopo
(242)	2		150	Sm	62		(266)	₹	109	192	7	77	103	곳	45	58.9	၀	27	9								PERI
(243)	3 %		152	Е	83		(267)	Cun	110	195	7	78	106	Pd	46	58.7	Z.	28	10								ÓDIO
(247)	8		157	ଚୁ	8					197	2	79	108	ğ	47	63.5	δ	29	1								CA D
(247)	97 PL		159	ď	65					201	Hg	08	112	ဂ္ဂ	48	65.4	Zn	06	12					_			
(251)	3 %		163	Ų	8					204	=	81	115	5	49	69.7	ନ୍ଧ	31	27.0	ಚ	10.8	В	5	13			ELEMENTOS 12 do Carbono
(254)	7 8		165	H _o	67					207	Pb	82	119	Sn	50	72.6	ဝူ	32	31 28.1	<u></u>	12.0	ဂ	6	14			MEN
(253)	8		167	Щ	88					209	<u>B</u>	83	122	ဗ္ဗ	51	74.9	As	33	31.0	5	14.0	Z	7	15			SOL
(256)	<u> </u>		169	Tm	69					(210)	Po	84	128	Te	52	79.0	Se	34	32.1	8	16.0	0	8	16			
(253)	ā		173	중	70					(210)	₽	85	127	-	53	79.9	₽	35	35.5	17	19.0	П	9	17		_	
(257)	103		175	Ε	71					(222)	R	98	131	ĕ	45	83.8	즉	96	39.9	18	20.2	Ne	10	4.00	H _D	5	0

FOLHA DE RASCUNHO

FOLHA DE RASCUNHO

FOLHA DE RASCUNHO