SERVIÇO PÚBLICO FEDERAL

MEC / SETEC

CIDADE DE PELOTAS INSTRUÇÕES GERAIS

- 1 Este caderno de prova é constituído por 40 (quarenta) questões objetivas.
- 2 A prova terá duração máxima de 04 (quatro) horas.
- 3 Para cada questão, são apresentadas 04 (quatro) alternativas (a b c d). **APENAS UMA delas** responde de maneira correta ao enunciado.
- 4 Após conferir os dados, contidos no campo Identificação do Candidato no Cartão de Resposta, assine no espaço indicado.
- 5 Marque, com caneta esferográfica azul ou preta de ponta grossa, conforme exemplo abaixo, no Cartão de Resposta único documento válido para correção eletrônica.

- 6 Em hipótese alguma, haverá substituição do Cartão de Resposta.
- 7 Não deixe nenhuma questão sem resposta.
- 8 O preenchimento do Cartão de Resposta deverá ser feito dentro do tempo previsto para esta prova, ou seja, 04 (quatro) horas.
- 9 Serão anuladas as questões que tiverem mais de uma alternativa marcada, emendas e/ou rasuras.
- 10 O candidato só poderá retirar-se da sala de prova após transcorrida 01 (uma) hora do seu início.

BOA PROVA!

CONHECIMENTOS ESPECÍFICOS

1. Os líquidos A e B são misturados. O vapor acima dessa mistura contém ambos os compostos. A mistura obedece à lei de Raoult. O valor da pressão total (p) é 72 kPa quando a fração molar de A (x_A) é 0.3 e 80 kPa quando a mistura é equimolar.

As pressões de vapor de A e B, respectivamente, em kPa, serão de

- a) 120 e 25
- b) 100 e 60
- c) 110 e 40
- d) 130 e 20
- **2.** O vapor produzido em uma caldeira é frequentemente "úmido" quer dizer, é uma névoa composta de vapor saturado e gotas de líquido. A qualidade de um vapor úmido é definida como a fração mássica da mistura que é vapor. A 400 K e a 245,6 kPa, o volume específico de uma mistura de vapor de água úmido é 0,505 m³. kg⁻¹.

Tabela 1. Propriedades térmicas do vapor saturado

Temperatura,°C	Pressão de vapor, Kgf.cm ⁻²	Volume espe	cífico, m³.kg ⁻¹
		Líquido	Vapor
		\mathbf{v}_{X} .10 3	\mathbf{v}_{y}
120	2,0243	1,0601	0,8914
125	2,3663	1,0644	0,7698
130	2,7540	1,0693	0,6677
135	3,1916	1,0741	0,5812

Com base na tabela 1 e nos dados apresentados, a qualidade desse vapor úmido, em percentual, é de aproximadamente

- a) 69
- b) 73
- c) 77
- d) 81

O texto abaixo se refere às questões 3 e 4.

As emissões de gases causadoras do efeito estufa ameaçam o equilíbrio do planeta ao promoverem o aquecimento global. A emissão de dióxido de carbono (CO_2) pelos veículos é um dos principais responsáveis. Um carro de passeio típico roda 80 km por dia e seu consumo é de 10 km por litro de gasolina, a qual é uma mistura de hidrocarbonetos. Para esse problema, vamos supor que a gasolina seja composta somente de isooctano, C_8H_{18} . Quando o isooctano queima totalmente, combina-se com o oxigênio, para produzir dióxido de carbono e água, segundo a seguinte reação química:

$$C_8H_{18} + X O_2 \rightarrow Y CO_2 + Z H_2O$$

- **3.** Um dos parâmetros de desempenho mais importante de um motor de combustão interna é a razão entre combustível e ar nesta mistura. Em uma situação ideal, a mistura deve conter a quantidade de oxigênio estritamente necessária para queimar todo o combustível presente. A razão entre massa de ar e massa de combustível nessas condições é chamada de razão estequiométrica (RE). Sabendo que o ar contém 23,2% em massa de oxigênio (32 g.mol⁻¹), considerando que a massa molecular da gasolina é de 114 g.mol⁻¹ e que sua massa específica é de 0,75 kg.L⁻¹, julgue as seguintes afirmações com relação ao texto.
 - I. O valor de RE é cerca de 15.
 - II. O valor de RE é menor do que X, mas é maior do que o valor de Y.
 - III. A massa de gasolina queimada por ano é menor do que 2000 kg.
 - IV. O valor de Y é 8 e é menor do que o valor de Z.

- a) I e III.
- b) II e IV.
- c) I e IV.
- d) II e III.
- **4.** A quantidade de CO₂ (44 g.mol⁻¹) produzida pelo carro de passeio, anualmente, será de aproximadamente
- a) 352 kg.
- b) 6762 kg.
- c) 19,2 toneladas.
- d) 153688 gramas.

5. A Figura 1 representa três frascos diferentes preenchidos com o mesmo líquido e a mesma temperatura. Os frascos encontram-se abertos para atmosfera (ponto 1). Considerar os três recipientes com a mesma altura (h) de líquido entre os pontos um (1) e dois (2) e também com a mesma base. Por outro lado, os pesos líquidos dos vasos são diferentes e suas "taras" são iguais.

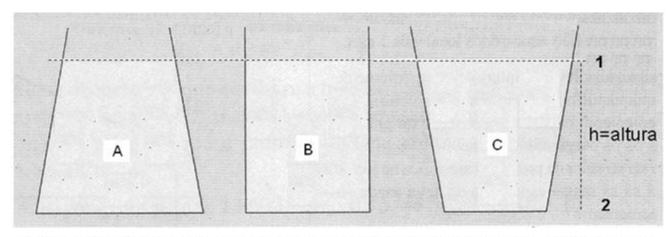


Figura 1. Três recipientes diferentes contendo o mesmo nível de líquido e a mesma temperatura.

Julgue as seguintes afirmações com relação à Figura 1.

- I. A força resultante de maior intensidade é aquela aplicada no fundo do vaso C.
- II. A pressão absoluta no fundo do recipiente A é maior do que no fundo dos demais recipientes.
- III. A pressão hidrostática no fundo dos três recipientes é igual independente do formato.
- IV. A pressão hidrostática no fundo do recipiente C é maior do que no fundo dos demais recipientes.

- a) I e III.
- b) II.
- c) III.
- d) II e IV.
- **6.** Um gás natural escoa em uma tubulação a 25°C e 210 kPa de pressão. A sua composição molar é 80% de A (16 kg.kmol⁻¹), 15% de B (30 kg.kmol⁻¹) e 5% de C (44 kg.kmol⁻¹). Considerando que o gás com comportamento ideal e constante universal é de 8314 Pa.m³.kmol⁻¹.K⁻¹, a massa específica do gás natural nesse escoamento, expressa em kg.m⁻³, é
- a) 1,46
- b) 1,57
- c) 1,65
- d) 1,72

- **7.** Um kilograma de monóxido de carbono está contido num cilindro inicialmente a 800 kPa e 30°C. O pistão tem uma massa de 4000 kg.m⁻² por área superficial. O gás é expandido até atingir o triplo do volume inicial. Cessada a expansão, foi observada uma diferença de pressão finita entre o sistema e a vizinhança. Analise as alternativas abaixo com relação ao problema exposto e ao conceito de trabalho, considerando a pressão atmosférica de 101,3 kPa, a constante universal dos gases (R) de 8314 Pa.m³.kmol⁻¹.K⁻¹, o conjunto cilindro-pistão como sistema em questão e o monóxido de carbono como gás ideal.
 - I. A pressão na vizinhança, no problema exposto, é de aproximadamente 140 kPa.
 - II. O trabalho não pode ser estocado, mas pode ser convertido em outra forma de energia.
 - III. O trabalho feito na vizinhança é cerca de 31,6 kJ.
 - IV. O processo é reversível e, portanto, a vizinhança fará com que o sistema retorne a sua posição inicial.

Estão corretas apenas as afirmativas

- a) I e III.
- b) II e IV.
- c) II, III e IV.
- d) I, II e III.
- **8.** O diagrama temperatura versus entropia (Figura 2) representa três processos termodinâmicos possíveis. Considere que "P" é a pressão, "T" é a temperatura, "S" é a entropia, V é o volume e "H" a entalpia.

Figura 2. Diagrama temperatura versus entropia para três processos termodinâmicos.

Com relação às propriedades de estado e aos segmentos AB, AC e AD, a única alternativa correta é que

- a) o segmento AB é isocórico porque V1=V2.
- b) os segmentos AB, AC e AD são, respectivamente, isobárico, isentrópico e isentálpico.
- c) o volume V1 é maior que V2, e o segmento AD é isentálpico .
- d) o segmento AC é isentrópico ou adiabático irreversível.

O texto ao lado se refere às questões 9 e 10.

Um ciclo de Carnot consiste de quatro etapas reversíveis (Figura 3). Ele estudou as transformações de energia térmica em mecânica.

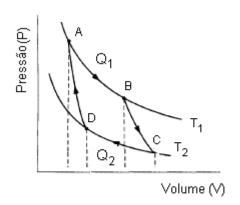


Figura 3. Digrama PV para o ciclo de Carnot

- 9. Analise as alternativas abaixo com relação ao ciclo de Carnot e à Figura 3.
 - É um ciclo composto por duas etapas isotérmicas e duas etapas isentrópicas alternadamente.
 - II. Na etapa de B até C, temos uma expansão adiabática.
 - III. Na etapa de A até B, a diferença de energia (ΔE) é igual ao calor (Q_1).
 - IV. Este ciclo térmico é inviável na prática, visto que opera de forma estritamente reversível, desconsiderando qualquer perda de energia para o meio externo.

Estão corretas apenas as afirmativas

- a) I e III.
- b) II e III.
- c) II, III e IV.
- d) I, II e IV.

10.Se T_1 =4 T_2 , qual é a eficiência do ciclo?

- a) 35%
- b) 45%
- c) 50%
- d) 75%

11.As equações de estado são utilizadas para descrever o comportamento de gases quando submetidos a transformações termodinâmicas. Uma equação bastante usada é a equação de Van Der Waals:

$$p = \frac{RT}{V - b} - \frac{a}{V^2}$$

onde a,b e R são constantes, p é a pressão, T é a temperatura absoluta, e V é o volume molar do gás.

Comparando a equação de van der Waals com a equação dos gases ideais, afirma-se:

- I. A equação dos gases perfeitos descreve o comportamento desses fluidos em escala macroscópica, desconsiderando interações intermoleculares.
- II. A equação de van der Waals procura quantificar os efeitos de não-idealidade dos gases com o uso de três constantes diferentes para cada gás.
- III. A constante "a", na equação van der Waals, representa a força de atração entre as moléculas, corrigindo, grosso modo, o volume total do sistema.
- IV. A constante "b", da equação de van der Waals, leva em conta o volume ocupado por cada molécula, corrigindo neste caso o volume total de gás.

Estão corretas apenas as afirmativas

- a) I e IV.
- b) I e III.
- c) II e III.
- d) I, II e IV.
- 12. Para expressão diferencial da energia interna:

$$dU = TdS - PdV$$

onde T, S P, e V são, respectivamente, temperatura, entropia, pressão e volume.

A relação de Maxweel desenvolvida a partir dessa expressão é:

a)
$$\left(\frac{\partial T}{\partial V}\right)_{S} = -\left(\frac{\partial P}{\partial S}\right)_{V}$$

$$b) \left(\frac{\partial T}{\partial P}\right)_{S} = \left(\frac{\partial V}{\partial S}\right)_{P}$$

$$-\left(\frac{\partial S}{\partial P}\right)_{T} = \left(\frac{\partial V}{\partial T}\right)_{P}$$

d)
$$\left(\frac{\partial S}{\partial V}\right)_{T} = \left(\frac{\partial P}{\partial T}\right)_{V}$$

- 13. Analise as seguintes afirmações em relação às leis da termodinâmica:
 - I. A primeira lei estabelece que a variação de energia interna (ΔU) de um sistema é dada pela diferença entre o calor (Q) e o trabalho (W) de expansão do sistema na vizinhança.
 - II. A segunda lei diz que é possível um sistema operando num ciclo e acoplado em um único reservatório de calor, produzir uma quantidade positiva de trabalho na vizinhança.
 - III. As variações de entropia (ΔS), em um sistema isolado, serão sempre positivas ou nulas ($\Delta S \ge 0$). Tal fato termodinâmico não contraria a segunda lei.
 - IV. O terceiro princípio da termodinâmica diz que a entropia de uma substância pura e perfeitamente cristalina é zero no zero absoluto de temperatura.

Estão corretas apenas as afirmativas

- a) I e III.
- b) III e IV.
- c) I, II e III.
- d) I, II e IV.
- **14.**A reação de desidrogenação, em fase gasosa, do 1-buteno para 1,3-butadieno ocorre a baixa pressão e 700 K:

$$C_4H_8 \rightleftharpoons C_4H_6 + H_2$$

As variações de energia livre padrão de formação do buteno e 1,3 butadieno são, respectivamente, 178,9 e 211,852 kJ.mol⁻¹. Considerando R= 8314 J.kmol⁻¹.K⁻¹, a constante de equilíbrio para essa reação a 700 K é de aproximadamente

- a) 3,5.10⁻³
- b) 5,5.10⁻³
- c) $7,5.10^{-3}$
- d) 9,5.10⁻³
- **15.**A desidrogenação catalítica do etilbenzeno é uma opção viável para a produção do estireno segundo a seguinte reação química (figura 4):

O calor de reação a 800°C, em kJ.kmol⁻¹, é de aproximadamente

Etilbenzeno estireno
$$\Delta_{\rm f} {\rm H^o} \ ({\rm kJ.mol^{\text{-}1}}) \qquad 29{,}790 \qquad \qquad 147{,}360 \qquad 0$$

128,40

- a) 17717
- b) 117600
- c) 135317
- d) -133580

Figura 4. Desidrogenação catalítica do etilbenzeno e suas propriedades termodinâmicas: Entalpia padrão formação $(\Delta_f H^o)$ e capacidade calorífera molar $(C_{p,m})$.

122.0

29.16

 $C_{p,m}$ (J.mol⁻¹.K)

16.Quanto aos fenômenos de transferência de calor, considere:

- I. Nas transferências térmicas por radiação, o calor transmitido pelas ondas eletromagnéticas depende principalmente da temperatura a que o corpo irradiante está submetido. Em nível atômico, os responsáveis por essas emissões são os elétrons.
- II. O fenômeno de transferência por condução pode ser amplificado, se forçarmos a passagem de um fluido pela superfície aquecida.
- III. Sabendo que os coeficientes de condutividade térmica da cortiça e da madeira são 0,033 kcal.s⁻¹.m⁻¹.ºC⁻¹ e 0,092 kcal.s⁻¹.m⁻¹.ºC⁻¹, respectivamente, é correto afirmar que uma placa de cortiça de espessura de 1 cm e área de 1 m² produzirá um isolamento térmico mais eficiente que uma placa de madeira com 2 cm de espessura e de mesma área.
- IV. A dissipação de calor de uma superfície pode ser diminuída pelo uso de um isolamento térmico, o qual pode se apresentar como uma associação em série de diferentes materiais, que caracteriza-se pela taxa de calor unidimensional total ser o somatório das taxas de cada camada de isolante.

Está (ão) correta (s) apenas a (s) afirmativa (s)

- a) I.
- b) II e IV.
- c) I e III.
- d) III.
- 17. Especificamente quanto à transferência de calor por convecção, o que é correto afirmar?
- a) O produto da condutividade térmica de um fluido e a espessura da camada limite do escoamento desse fluido sobre uma superfície aquecida é conhecido como coeficiente de película.
- b) A resistência térmica à transferência de calor por convecção depende apenas do coeficiente de película e da área de transferência.
- c) Um adimensional usualmente utilizado em experimentos envolvendo convecção é o número de Biot, que representa uma relação entre a transferência de calor ocorrida por convecção e aquela por condução pura, através do mesmo fluido.
- d) A velocidade do fluido e o diâmetro do tubo são variáveis que não afetam diretamente o coeficiente de convecção.
- **18.**Há várias maneiras de aumentar a transferência de calor, dentre as quais podemos citar o uso de aletas. Quanto a este aparato, afirma-se que
- a) aletas são dispositivos utilizados para diminuir a área de troca térmica.
- b) o coeficiente de aleta independe da geometria da aleta.
- c) a eficiência de uma aleta é determinada para corrigir a taxa de calor através dela, uma vez que a temperatura da aleta varia ao longo do comprimento.
- d) para determinação do perfil de temperatura ao longo do comprimento de uma aleta, uma das condições de contorno é que a temperatura na base é diferente da temperatura da superfície que se deseja dissipar o calor.

19.A equação que representa a taxa de calor (\dot{q}) por condução, em uma parede plana, quando a condutividade térmica (k) é uma função linear da temperatura (T) do tipo $k=\beta T$, é representada por

a)
$$\dot{q} = \frac{\beta_2.A.T_2}{L} - \frac{\beta_1.A.T_1}{L}$$

b)
$$\dot{q} = \frac{\beta . A.(T_2 - T_1)}{L}$$

c)
$$\dot{q} = -\frac{\beta . A. (T_2 - T_1)^2}{L}$$

d)
$$\dot{q} = -\frac{\beta.A.(T_2^2 - T_1^2)}{2.L}$$

- 20.Um bom isolante térmico deve possuir
- a) poder higroscópico baixo, massa especifica baixa, resistência mecânica compatível com o uso e ser inerte.
- b) poder higroscópico baixo, massa especifica alta, resistência mecânica compatível com o uso e ser inerte.
- c) poder higroscópico alto, massa especifica alta, estabilidade química e resistência mecânica alta.
- d) poder higroscópico baixo, massa especifica baixa, instabilidade química e resistência mecânica compatível com o uso.
- **21.**As equações que representam a primeira e a segunda lei de Fick para um sistema isobárico, isotérmico, área de transferência constante e unidimensional, são respectivamente,

a)
$$J = -D \times \frac{\partial^2 C}{\partial x^2}$$
 e $\frac{\partial C}{\partial t} = D \times \frac{\partial C}{\partial x}$

c)
$$\frac{\partial C}{\partial t} = \rho \times D \times \nabla^2 C$$
 e $J = -D \times \frac{\partial C}{\partial x}$

d)
$$J = -D \frac{\partial C}{\partial x}$$
 e $\frac{\partial C}{\partial t} = \rho \times D^2 \times \frac{\partial^2 C}{\partial x^2}$

Onde: J = fluxo molar; D = difusividade; C = concentração; $\rho = massa especifica$; t = tempo; x = direção do fluxo

- **22.**A Figura 5, ao lado, mostra os diferentes tipos de mecanismos de difusão de massa em sólidos, com relação a estes mecanismos é correto afirmar que
- a) os mecanismos 1 e 5 são respectivamente de troca direta e lacunar.
- b) os mecanismos 6 e 4 são respectivamente de cordão e intersticial indireto.
- c) os mecanismos 3 e 2 são respectivamente de troca direta e anel.
- d) os mecanismos 4 e 5 são respectivamente intersticial direto e intersticial indireto.

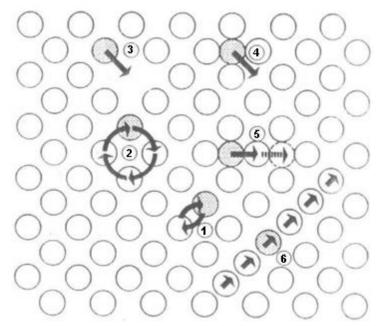


Figura 5: Mecanismos de difusão em um meio sólido.

- **23.**Um tubo de borracha, com 4,0 mm de diâmetro interno, 10 mm de diâmetro externo e 1 m de comprimento é utilizado para transportar hidrogênio gasoso a 2 atm e 27°C. Considerando regime permanente, simetria cilíndrica, fluxo convectivo desprezível, concentração de H₂ no exterior aproximadamente igual a zero, solubilidade do hidrogênio na borracha a 27°C igual a 2,28×P mol H₂.m⁻³ de sólido, onde P é a pressão do hidrogênio gasoso em atm, e que a difusividade do hidrogênio na borracha a 27°C é 1,8×10⁻¹⁰ m².s⁻¹, a taxa de transferência de hidrogênio através da parede de borracha vale aproximadamente
- a) 5,62x10⁻⁹ mol/h.
- b) 1,01x10⁻⁵ mol/h.
- c) $2,02x10^{-5}$ mol/h.
- d) 1,12x10⁻¹⁰ mol/h.
- 24. A difusão em líquidos e sólidos é consideravelmente menor que em gases, isto se deve as
- a) forças intermoleculares maiores, ao maior número de colisões entre moléculas e à consequente redução de movimento molecular.
- b) forças intermoleculares maiores, ao menor número de colisões entre moléculas e ao consequente aumento de movimento molecular.
- c) forças intermoleculares menores, ao maior número de colisões entre moléculas e ao consequente aumento de movimento molecular.
- d) forças intermoleculares maiores, ao menor número de colisões entre moléculas e à consequente redução de movimento molecular.

25. A lei de Stokes é corretamente representada pela equação:

$$V_S = \frac{D_p^2 \times g \times \left(\rho_s - \rho_f\right)}{18 \times \mu}$$

Observação: " V_S " corresponde à velocidade de sedimentação, " D_p ", ao diâmetro das partículas; "g" à aceleração da gravidade; ρ_s à massa específica das partículas sólidas; ρ_f à massa específica do fluido; e μ à viscosidade dinâmica do fluido. Considerando essa equação, é correto afirmar que

- a) pode ser utilizada somente para partículas esféricas com superfícies lisas e em regime turbulento.
- b) é obtido coeficiente de arraste igual a 24 x Reynolds⁻¹, quando combinada com a equação da velocidade terminal de Newton.
- c) pode ser utilizada para determinação da viscosidade de um fluido utilizando o picnômetro.
- d) é obtida somente a partir de um balanço das forças de arraste sobre uma partícula em movimento linear através de um fluido.

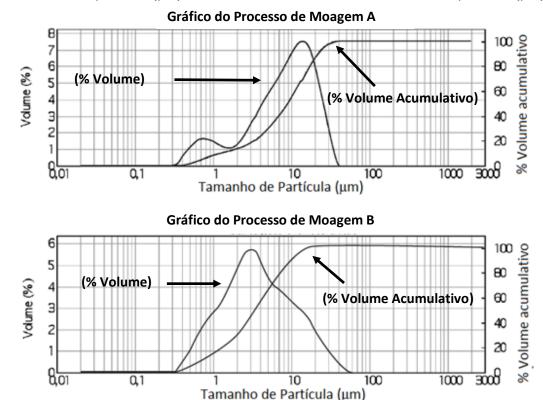
26.Nas Tabelas abaixo, encontram-se as malhas que três empresas fornecedoras de farinhas possuem em seus sistemas de classificação (Tabela 2) e as aberturas das malhas de peneiras conforme a Série Tyler (Tabela 3).

Empresa A	Empresa B	Empresa C			
12	16	16			
16	24	22			
22	40	40			
40	60	60			

Tabela 2: Malha por polegada linear das peneiras disponíveis no sistema de classificação em três diferentes empresas

Malha oor pol. Linear	bitola do fio Bwg	bitola do fio (mm)	abertura da malha (mm)	Area prop. livre(%)	kg por m²	Malha por pol. Linear	bitola do fio Bwg	bitola do fio (mm)	abertura da malha (mm)	Area prop. livre(%)	kg por m*
	14	2,10	10,60	69,55	4,382		24	0,55	1,03	41,99	2,487
2	16	1,65	11,04	75,68	2,665	16	26	0,45	1,13	50,69	1,635
	18	1,24	11,45	81,35	1,500		28	0,35	1,23	60,22	0,974
	16	1,65	4,70	54,76	5,462		28	0,35	0,80	47,88	1,367
4	18	1,24	5,10	64,63	3,042	22	30	0,30	0,84	54,17	0,993
4	20	0,88	5,46	73,96	1,518		32	0,22	0,92	64,32	0,526
	22	0,71	5,64	78,89	0,985	24	28	0,35	0,70	44,09	1,503
	20	0,88	2,29	51,84	3,121	40	32	0,22	0,40	41,00	0,995
8	24	0,55	2,62	67,90	1,192	50	34	0,20	0,30	36,75	1,403
	26	0,45	2,72	73,66	0,794	60		0,16	0,26	38,69	0,797
	22	0,71	1,40	44,09	3,097	70		0,14	0,22	37,71	0,721
12	23	0,63	1,48	49,33	2,412	80		0,14	0,17	31,25	0,840
12	24	0,55	1,55	54,17	1,821	90		0,12	0,16	33,03	0,690
	26	0,45	1,66	61,46	1,206	100		0,10	0,15	36,76	0,527

Tabela 3: Abertura das malhas das peneiras segundo a Série Tyler


Considerando essas informações, a(s) empresa(s) em condições de fornecer farinha com uma granulometria de partículas, que passem por uma peneira com diâmetro de 0,70 mm e que fiquem retidas em uma peneira com 0,40 mm de diâmetro, será (ão) a (s)

- a) Empresa A.
- b) Empresa B.
- c) Empresa C.
- d) Empresas A e C.

Os dados a seguir referem-se às guestões 27 e 28.

Num estudo recente efetuado por Cardoso, H.A.I. et al. (2012) foi analisada a influência de dois processos de moagem nas propriedades de cimentos de fosfato de cálcio. Foram testados dois processos de moagem, denominados processo A e processo B, e foi realizada uma análise granulométrica por difração a laser, cujos resultados são apresentados na figura 6.

Figura 6: Gráficos de distribuição do tamanho de partículas para os processos de moagem A e B: % de volume tamanho de partícula (μm) e % do volume acumulativo vs. tamanho de partícula (μm).

Fonte: Adaptado de Cardoso, H.A.I.; Motisuke, M.; Zavaglia, C.A.C., "Análise da influência de dois processos distintos de moagem nas propriedades do pó precursor e do cimento de beta-TCP", Cerâmica, 58 (2012) 225-228.

- **27.**Uma empresa de cimento solicita que, no mínimo, 80% do volume acumulativo dos pós de cimento a serem usados em seu processo produtivo possuam um diâmetro igual ou inferior a 10 micron. Frente a essa especificação, afirma-se que
- a) o processo B de moagem atende a essa especificação.
- b) o processo A de moagem atende a essa especificação.
- c) os dois processos de moagem atendem a essa especificação.
- d) nenhum dos processos de moagem apresentados atendem a essa especificação.
- **28.** Analisando os gráficos de distribuição do tamanho de partículas da figura 6, é correto afirmar que
- a) podemos observar a presença de material heterogêneo quando obtemos uma distribuição bimodal.
- b) podemos observar a presença de material homogêneo quando obtemos uma distribuição bimodal.
- c) não podemos observar a dispersão granulométrica em função do formato da curva de % do volume vs. tamanho de partícula.
- d) podemos observar a presença de material homogêneo no processo A, quando comparamos sua distribuição granulométrica com a do processo B.

29.Numa empresa de produção de óleo, desejamos efetuar a separação de todos os componentes de uma mistura hipotética (Tabela 4) utilizando uma centrífuga decantadora vaso tubular (Figura 7).

Tabela 4: Componentes de uma mistura hipotética

Componente		Densidade absoluta	Composição			
		(Kg/ m³)	(%p/p)			
1	Água	Água 1,000				
2	Óleo	9,5				
3	Gomas, pelos, sólidos, etc.	Aproximadamente 1,150	0,5			

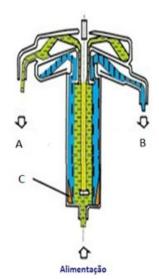
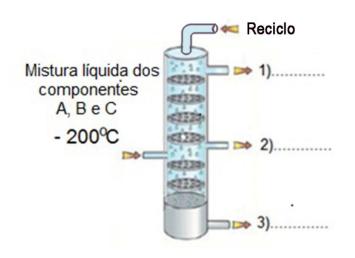



Figura 7: Centrífuga decantadora vaso tubular

Considerando os dados apresentados, os pontos de coleta dos diferentes componentes serão

- a) componente 1 no fluxo B, componente 2 no fluxo A e componente 3 no ponto C.
- b) componente 1 no fluxo A, componente 2 no fluxo B e componente 3 no ponto C.
- c) componente 1 no fluxo B, componente 2 no ponto C e componente 3 no fluxo A.
- d) componente 1 no ponto C, componente 2 no fluxo B e componente 3 no fluxo A.

30.Observe a figura 8 e a tabela 5.

Tabela 5: Temperaturas de ebulição dos principais componentes da mistura									
Componente Temperatura de ebulição (°C)									
А	-196								
В	-186								
С	-183								

Figura 8: Coluna de destilação fracionada

Os gases A, B e C são produzidos a partir da destilação fracionada de uma mistura líquida destes componentes, como mostrado na figura 8, sendo todas as quedas de pressão, dentro da coluna, desprezíveis. Considerando os pontos de ebulição dos componentes da mistura líquida, apresentados na tabela 5, se ocorrer uma redução do perfil de temperaturas da coluna em função do aumento de reciclo do produto de topo, é correto afirmar que

- a) aumentará o teor do componente C no ponto 2 de coleta de produto.
- b) aumentará o teor do componente B no ponto 1 da coluna.
- c) aumentará o teor do componente A que será extraído no ponto 2 da coluna.
- d) não ocorrerá nenhuma alteração nos perfis de concentrações ao longo dos três pontos de coleta de produtos.

- **31.**O número de pratos teóricos de uma coluna de destilação para uma mistura de benzenotolueno foi calculado utilizando a resolução gráfica de McCabe-Thiele, considerando-se as hipóteses a seguir:
 - a coluna não apresenta fugas térmicas;
 - a coluna opera a pressão de 760 mmHg, sendo todas as quedas de pressão, dentro da coluna, desprezíveis;
 - a composição molar da alimentação é de 47% de benzeno, estando hipoteticamente numa temperatura e pressão que fazem a mistura encontrar-se no estado de líquido saturado;
 - o condensador total condensa todo o vapor sem resfriar o condensado abaixo de seu ponto de ebulição;
 - o calor fornecido à mistura é efetuado por um refervedor parcial e considerado como um prato de separação.

A figura, 9 a seguir, mostra quatro diagramas y-x para benzeno e tolueno a uma pressão de 760 mmHg

Figura 9: Diagramas y-x para benzeno e tolueno a uma pressão de 760 mmHg, usados na determinação do número teórico de pratos, através do método de resolução gráfica de McCabe-Thiele.

Sabendo que a coluna real possui 14 pratos e considerando as observações anteriormente mencionadas, a eficiência global aproximada da coluna e o gráfico que melhor representa a resolução por McCabe-Thiele são

- a) 86% de eficiência global e o gráfico A, respectivamente.
- b) 78,5% de eficiência global e o gráfico B, respectivamente.
- c) 78,5% de eficiência global e o gráfico C, respectivamente.
- d) 60% de eficiência global e o gráfico D, respectivamente.

32. Observe a figura 10.

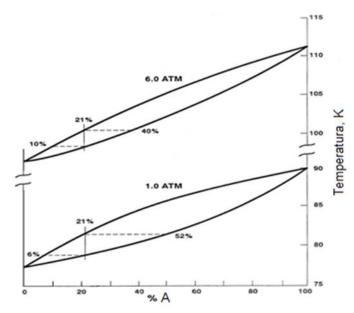


Figura 10 – Equilíbrio líquido vapor para um sistema binário A + B

Analisando os gráficos de equilíbrio de um sistema binário para obtenção dos componentes A e B, a partir de uma mistura desses componentes, usando um sistema com duas colunas, afirmase que

- a) a performance da separação aumenta com o decréscimo da pressão, ou seja, é mais fácil separar os componentes A e B em menores pressões.
- b) a performance da separação diminui com o decréscimo da pressão, ou seja, é mais difícil separar os componentes A e B em menores pressões.
- c) o uso de pressões diferentes dentro do sistema não afeta a performance da separação.
- d) o aumento da pressão nas colunas permite reduzir a temperatura de ebulição do componente B, aumentando sua composição na mistura e reduzindo a performance de separação dos dois componentes.

- **33.**Uma massa de ar úmido, inicialmente com temperatura de bulbo seco igual a 32°C e umidade relativa de 50%, é resfriada até 14°C à pressão constante de 1 atm. Considerando o anexo 1, os valores aproximados de entalpia e umidade absoluta final serão, respectivamente,
- a) 40 kcal/kg ar seco e 10 g vapor/Kg ar seco.
- b) 72 kcal/kg ar seco e 10 g vapor/Kg ar seco.
- c) 40 kcal/kg ar seco e 15 g vapor/Kg ar seco.
- d) 72 kcal/kg ar seco e 15 g vapor/Kg ar seco.
- **34.**No processo de fabricação de açúcar, imediatamente antes da etapa de filtração, adiciona-se bagacilho à calda, numa relação de 5 Kg por tonelada de calda. A finalidade do bagacilho é atuar como auxiliar de filtração.

Afirma-se que sua presença

- a) aumentará a compressibilidade da torta.
- b) aumentará o ciclo de operação do filtro.
- c) aumentará a permeabilidade da torta.
- d) aumentará a resistência hidráulica da torta.
- **35.**Quanto aos filtros de leitos granulares, julgue os itens a seguir:
 - Alguns modelos são construídos para operar sob diferenciais de pressão, para aumentar a sua capacidade de produção de filtrado.
 - II. Requerem pouca área disponível para sua instalação.
 - III. São empregados geralmente para retirar pequenas quantidades de sólidos de grandes volumes de líquidos, em que somente o sólido possui valor unitário.
 - IV. Para a limpeza do leito, é comum a utilização de lavagem reversa com água.

- a) I e IV.
- b) II e III.
- c) I, II e III.
- d) I, II e IV.

As questões de 36 a 38 referem-se à figura 11, a seguir:

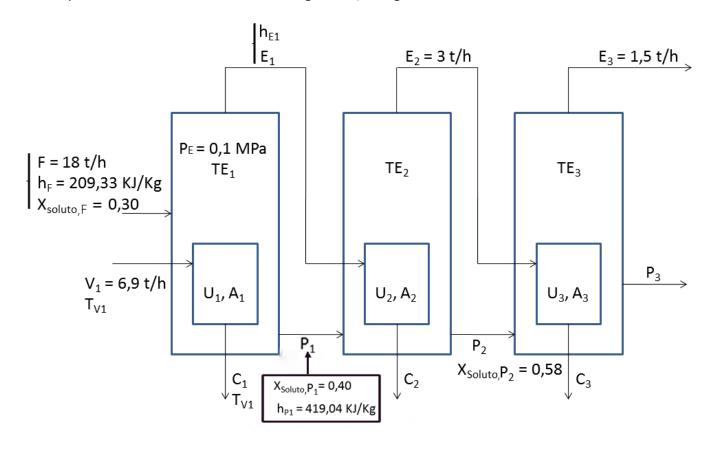


Figura 11 - Sistema de evaporação

Legenda:

F, E_1 , E_2 , E_3 , P_1 , P_2 , P_3 , V, C_1 , C_2 , C_3 = vazões mássicas em toneladas por hora;

X_{Soluto} = frações mássicas de soluto nas diferentes correntes;

 h_F , h_{E1} , h_{P1} = entalpias dos fluidos nas correntes F, E_1 e P_1 , respectivamente , em KJ/Kg;

 T_{E1} , T_{E2} , T_{E3} = temperaturas no interior dos evaporadores 1, 2 e 3, respectivamente, em °C;

 T_{V1} = temperatura do vapor de aquecimento e do condensado produzido no primeiro efeito, em °C;

P_E = pressão no interior do evaporador 1 em MPa;

 U_1 , U_2 , U_3 = Coeficientes globais de troca térmica dos evaporadores 1, 2 e 3, respectivamente, em Kcal/h.m².°C;

 A_1 , A_2 , A_3 = áreas de troca térmica dos evaporadores 1, 2 e 3, respectivamente, em m^2 .

- **36.**Considerando os dados apresentados na figura 11, a economia ou eficiência desse sistema será de aproximadamente
- a) 65%
- b) 77%
- c) 130%
- d) 195%
- **37.**Considerando os dados apresentados na figura 11, os anexos 2 e 3, e sabendo que a solução sofre elevação de 50° C em seu ponto de ebulição no primeiro efeito, a temperatura do vapor de aquecimento utilizado no primeiro efeito (T_{V1}) será de aproximadamente
- a) 150°C
- b) 160°C
- c) 165°C
- d) 180°C
- **38.**Para o sistema representado na figura 11, julgue os itens a seguir:
 - I. A pressão de trabalho no interior do evaporador 1 é maior do que a no interior do evaporador 2, que por sua vez é maior que a no interior do evaporador 3, facilitando o transporte da suspensão concentrada de um efeito para o outro.
 - II. A solução mais concentrada estará sujeita à temperatura de ebulição menor.
 - III. Este tipo de sistema é chamado evaporação à múltiplo efeito com alimentação direta.
 - IV. Uma de suas vantagens é efetuar todo o aquecimento da carga no primeiro efeito, aumentando a economia do processo.

- a) I e IV.
- b) II e III.
- c) I, II e III.
- d) I, II e IV.

39.A figura 12, a seguir, apresenta a obtenção de cobre através da operação unitária de flotação por ar dissolvido.

FLUXOGRAMA DE BENEFICIAMENTO DE MINERIO DE COBRE DA MINA CARAIBA

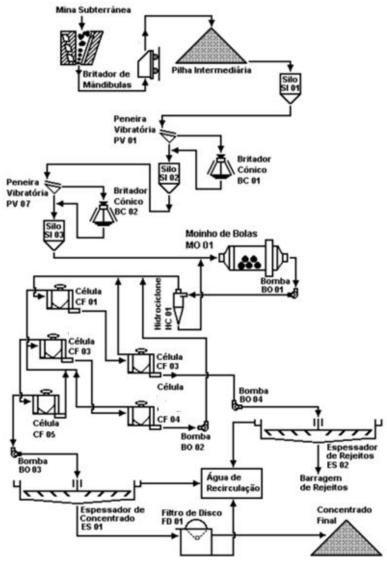
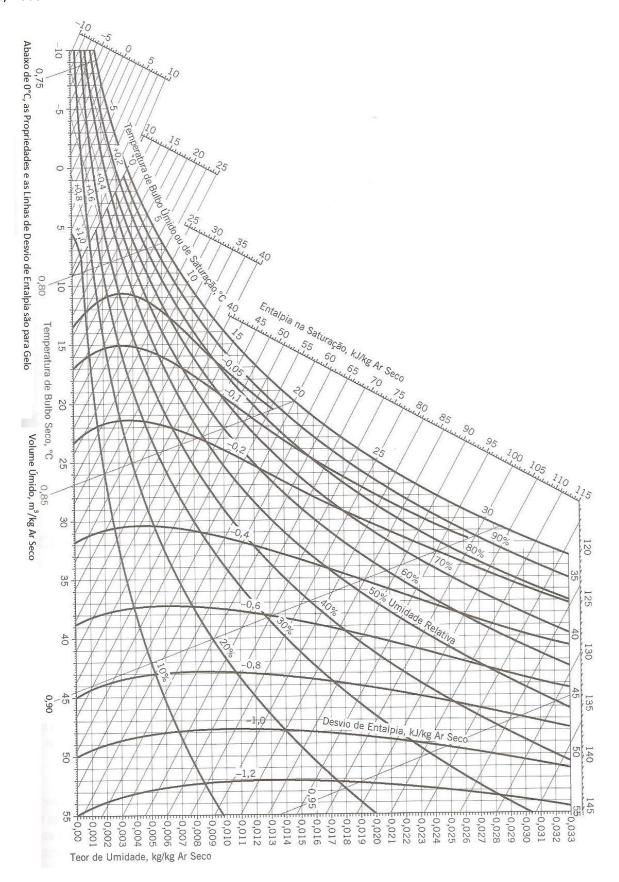


Figura 12 – Obtenção de cobre através de flotação por ar dissolvido. (FONTE: Centro de Tecnologia Mineral / Ministério da Ciência e Tecnologia / Coordenação de Inovação Tecnológica – CTEC "COBRE – MINERAÇÃO CARAÍBA", João Alves Sampaio, Engo. de Minas, D.Sc.; Eduardo Augusto de Carvalho, Darlylson Geraldo Andrade. Rio de Janeiro, Dezembro / 2002. CT2002-180-00 Comunicação Técnica elaborada para o Livro Usina de Beneficiamento de Minérios do Brasil.)

Quanto à operação de flotação por ar dissolvido, julgue os itens a seguir:

- I. Uma das aplicações da operação unitária de flotação é a concentração de minérios pobres.
- II. A formação do agregado bolha-partícula é a etapa controladora da velocidade na flotação.
- III. As partículas que aderem às bolhas de ar são chamadas hidrofílicas.
- IV. O ciclone localizado após o moinho de bolas tem a função de classificador de partículas.

- a) I e IV.
- b) II e III.
- c) I, II e III.
- d) I, II e IV.


40.Com relação à operação unitária de extração, julgue os itens a seguir:

- I. A operação unitária de extração não depende das diferenças químicas dos componentes enquanto que a destilação se embasa na diferença das pressões de vapor dos componentes.
- II. A taxa de difusão do soluto através do sólido e do solvente até a superfície do sólido geralmente é a responsável pelo controle da resistência de transferência no processo de lixiviação.
- III. A necessidade de redução de tamanho do material a ser submetido a um processo de extração sólido-líquido depende do tipo de material a ser usado, ou seja, inorgânico, de origem animal ou de origem vegetal.
- IV. Materiais orgânicos ou inorgânicos não deverão ser reduzidos se o material solúvel que deseja ser extraído está recoberto por uma camada insolúvel externamente.

- a) I e II.
- b) II e III.
- c) I e IV.
- d) I, II e III.

ANEXO 1: Carta Psicrométrica – unidades SI. Estados de referência: H₂O (1,0°C, 1 atm), ar seco (0°C, 1 atm). (Reproduzido com permissão de Carrier Corporation.)

Fonte: Felder, R.M.; Rousseau, R.W.; Princípios Elementares dos Processos Químicos. 3ª ed. Rio de Janeiro, LTC, 2008.

ANEXO 2: Tabela de propriedades termodinâmicas da água líquida e do vapor saturado

		Specific volume m³/kg			internal energy kJ/kg			Enthalpy kJ/kg			Entropy kJ/(kg·K)		
°C `	Sat. press. kPa	Sat. liquid	Sat. vapor	Sat. liquid	Evap.	Sat. vapor	Sat. liquid	Evap.	Sat. vapor	Sat. liquid	Evap.	Sat. vapor	
<u>T</u>	P _{sat}	v_f	v_g	u_f	u_{fg}	ug	h_f	h_{fg}	h_g	s_f	s_{fg}	Sg	
0.01	0.6113	0.001 000	206.14	0.0	2375.3	2375.3	0.01	2501.3	2501.4	0.000	9.1562	9.1562	
5	0.8721	0.001 000	147.12	20.97	2361.3	2382.3	20.98	2489.6	2510.6	0.0761	8.9496	9.0257	
10	1.2276	0.001 000	106.38	42.00	2347.2	2389.2	42.01	2477.7	2519.8	0.1510	8.7498	8.9008	
15	1.7051	0.001 001	77.93	62.99	2333.1	2396.1	62.99	2465.9	2528.9	0.2245	8.5569	8.7814	
20	2.339	0.001 002	57.79	83.95	2319.0	2402.9	83,96	2454.1	2538.1	0.2966	8.3706	8.6672	
25	3.169	0.001 003	43.36	104.88	2304.9	2409.8	104.89	2442.3	2547.2	0.3674	8.1 9 05	8.5580	
30	4.246	0.001 004	32.89	125.78	2290.8	2416.6	125.79	2430.5	2556.3	0.4369	8.0164	8.4533	
35	5.628	0.001 006	25.22	146.67	2276.7	2423.4	146.68	2418.6	2565.3	0.5053	7.8478	8.3531	
40	7.384	0.001 008	19.52	167.56	2262.6	2430.1	167.57	2406.7	2574.3	0.5725	7.6845	8.2570	
45	9.593	0.001 010	15.26	188.44	2248.4	2436.8	188.45	2394.8	2583.2	0.6387	7.5261	8.1648	
50	12.349	0.001 012	12.03	209.32	2234.2	2443.5	209.33	2382.7	2592.1	0.7038	7.3725	8.0763	
55	15.758	0.001 015	9.568	230.21	2219.9	2450.1	230.23	2370.7	2600.9	0.7679	7.2234	7.9913	
60	19.940	0.001 017	7.671	251.11	2205.5	2456.6	251.13	2358.5	2609.6	0.8312	7.0784	7.9096	
65	25.03	0.001 020	6.197	272.02	2191.1	2463.1	272.06	2346.2	2618.3	0.8935	6.9375	7.8310	
70	31.19	0.001 023	5.042	292.95	2176.6	2469.6	292.98	2333.8	2626.8	0.9549	6.8004	7.7553	
75	38.58	0.001 026	4.131	313.90	2162.0	2475.9	313.93	2321.4	2635.3	1.0155	6.6669	7.6824	
80	47.39	0.001 029	3.407	334.86	2147.4	2482.2	334.91	2308.8	2643.7	1.0753	6.5369	7.6122	
85	57.83	0.001 033	2.828	355.84	2132.6	2488.4	355.90	2296.0	2651.9	1.1343	6.4102	7.5445	
90	70.14	0.001 036	2.361	376.85	2117.7	2494.5	376.92	2283.2	2660.1	1.1925	6.2866	7.4791	
95	84.55	0.001 040	1.982	397.88	2102.7	2500.6	397.96	2270.2	2668.1	1.2500	6.1659	7.4159	
	Sat. press. MPa												
100	0.10135	0.001 044	1.6729	418.94	2087.6	2506.5	419.04	2257.0	2676.1	1.3069	6.0480	7.3549	
105	0.12082	0.001 048	1.4194	440.02	2072.3	2512.4	440.15	2243.7	2683.8	1.3630	5.9328	7.2958	
110	0.143 27	0.001 052	1.2102	461.14	2057.0	2518.1	461.30	2230.2	2691.5	1.4185	5.8202	7.2387	
115	0.16906	0.001 056	1.0366	482.30	2041.4	2523.7	482.48	2216.5	2699.0	1.4734	5.7100	7.1833	
120	0.198 53	0.001 060	0.8919	503.50	2025.8	2529.3	503.71	2202.6	2706.3	1.5276	5.6020	7.1296	
125	0.2321	0.001 065	0.7706	524.74	2009.9	2534.6	524.99	2188.5	2713.5	1.5813	5.4962	7.0775	
130	0.2701	0.001 070	0.6685	546.02	1993.9	2539.9	546.31	2174.2	2720.5	1.6344	5.3925	7.0269	
135	0.3130	0.001 075	0.5822	567.35	1977.7	2545.0	567.69	2159.6	2727.3	1.6870	5.2907	6.9777	
140	0.3613	0.001 080	0.5089	588.74	1961.3	2550.0	589.13	2144.7	2733.9	1.7391	5.1908	6.9299	
145	0.4154	0.001 085	0.4463	610.18	1944.7	2554.9	610.63	2129.6	2740.3	1.7907	5.0926	6.8833	
150	0.4758	0.001 091	0.3928	631.68	1927.9	2559.5	632.20	2114.3	2746.5	1.8418	4.9960	6.8379	
155	0.5431	0.001096	0.3468	653.24	1910.8	2564.1	653.84	2098.6	2752.4	1.8925	4.9010	6.7935	
160	0.6178	0.001 102	0.3071	674.87	1893.5	2568.4	675.55	2082.6	.2758.1	1.9427	4.8075	6.7502	
165	0.7005	0.001 108	0.2727	696.56	1876.0	2572.5	697.34	2066.2	2763.5	1.9925	4.7153	6.7078	
170	0.7917	0.001 114	0.2428	718.33	1858.1	2576.5	719.21	2049.5	2768.7	2.0419	4.6244	6.6663	
175	0.8920	0.001 121	0.2168	740.17	1840.0	2580.2	741.17	2032.4	2773.6	2.0909	4.5347	6.6256	
	1.0021	0.001 127	0.19405	762.09	1821.6	2583.7	763.22	2015.0	2778.2	2.1396	4.4461	6.5857	
100													
180 185	1.1227	0.001 134	0.174 09	784.10	1802.9	2587.0	785.37	1997.1	2782.4	2.1879	4.3586	6.5465	
185 190	1.1227 1.2544	0.001 134 0.001 141	0.174 09 0.156 54	784.10 806.19	1802.9 1783.8	2587.0 2590.0	785.37 807.62	1997.1 1978.8	2782.4 2786.4	2.1879 2.2359	4.3586 4.2720	6.5465 6.5079	

Fonte:

http://sistemas.eel.usp.br/docentes/arquivos/8554681/00000000/Tabelas depropriedades termodinamicas (agua).pdf acesso em 02/07/2015.

ANEXO 3: Tabela de propriedades termodinâmicas do vapor superaquecido

T ℃	ຫ ³ /kg	μ kJ/kg	h kJ/kg	s kJ/(kg·K)	ຫ ³ /kg	μ kJ/kg	h kJ/kg	s kJ/(kg·K)	ຫ ³ /kg	u kJ/kg	h kJ/kg	s kJ/{kg⋅K)
		P = 0.01	MPa (45.8	31°C)*		P = 0.05	MPa (81	.33°C)	1	P = 0.10 M	IPa (99.6	3°C)
Sat.†	14.674	2437.9	2584.7	8.1502	3.240	2483.9	2645.9	7.5939	1.6940	2506.1	2675.5	7.3594
50	14.869	2443.9	2592.6	8.1749								
100	17.196	2515.5	2687.5	8.4479	3.418	2511.6	2682.5	7.6947	1.6958	2506.7	2676.2	7.3614
150	19.512	2587.9	2783.0	8.6882	3.889	2585.6	2780.1	7.9401	1.9364	2582.8	2776.4	7.6134
200	21.825	2661.3	2879.5	8.9038	4.356	2659.9	2877.7	8.1580	2.172	2658.1	2875.3	7.8343
250	24.136	2736.0	2977.3	9.1002	4.820	2735.0	2976.0	8.3556	2.406	2733.7	2974.3	8.0333
300	26.445	2812.1	3076.5	9.2813	5.284	2811.3	3075.5	8.5373	2.639	2810.4	3074.3	8.2158
400	31.063	2968.9	3279.6	9.6077	6:209	2968.5	3278.9	8.8642	3.103	2967.9	3278.2	8.5435
500	35.679	3132.3	3489.1	9.8978	7.134	3132.0	3488.7	9.1546	3.565	3131.6	3488.1	8.8342
600	40.295	3302.5	3705.4	10.1608	8.057	3302.2	3705.1	9.4178	4.028	3301.9	3704.4	9.0976
700	44.911	3479.6	3928.7	10.4028	8.981	3479.4	3928.5	9.6599	4.490	3479.2	3928.2	9.3398
800	49.526	3663.8	4159.0	10.6281	9.904	3663.6	4158.9	9.8852	4.952	3663.5	4158.6	9.5652
900	54.14 1	3855.0	4396.4	10.8396	10.828	3854.9	4396.3	10.0967	5.414	3854.8	4396.1	9.7767
1000	58.757	4053.0	4640.6	11.0393	11.751	4052.9	4640.5	10.2964	5.875	4052.8	4640.3	9.9764
1100	63.372	4257.5	4891.2	11.2287	12.674	4257.4	4891.1	10.4859	6.337	4257.3	4891.0	10.1659
1200	67.987	4467.9	5147.8	11.4091	13.597	4467.8	5147.7	10.6662	6.799	4467.7	5147.6	10.3463
1300	72.602	4683.7	5409.7	11.5811	14.521	4683.6	5409.6	10.8382	7.260	4683.5	5409.5	10.5183
		P = 0.20 N	/Pa (120	.23°C)		P = 0.30	MPa (133	3.55°C) _∂	P	= 0.40 M	Pa (143.	63°C)
Sat.	0.8857	2529.5	2706.7	7.1272	0.6058	2543.6	2725.3	6.9919	0.4625	2553.6	2738.6	6.8959
150	0.9596	2576.9	2768.8	7.2795	0.6339	2570.8	2761.0	7.0778	0.4708	2564.5	2752.8	6.9299
200	1.0803	2654.4	2870.5	7.5066	0.7163	2650.7	2865.6	7.3115	0.5342	2646.8	2860.5	7.1706
250	1.1988	2731.2	2971.0	7.7086	0.7964	2728.7	2967.6	7.5166	0.5951	2726.1	2964.2	7.3789
300	1.3162	2808.6	3071.8	7.8926	0.8753	2806.7	3069.3	7.7022	0.6548	2804.8	3066.8	7.5662
400	1.5493	2966.7	3276.6	8.2218	1.0315	2965.6	3275.0	8.0330	0.7726	2964.4	3273.4	7.8985
500	1.7814	3130.8	3487.1	8.5133	1.1867	3130.0	3486.0	8.3251	0.8893	3129.2	3484.9	8.1913
600	2.013	3301.4	3704.0	8.7770	1.3414	3300.8	3703.2	8.5892	1.0055	3300.2	3702.4	8.4558
700	2.244	3478.8	3927.6	9.0194	1.4957	3478.4	3927.1	8.8319	1.1215	3477.9	3926.5	8.6987
800	2.475	3663.1	4158.2	9.2449	1.6499	3662.9	4157.8	9.0576	1.2372	3662.4	4157.3	8.9244
900	2.705	3854.5	4395.8	9.4566	1.8041	3854.2	4395.4	9.2692	1.3529	3853.9	4395.1	9.1362
1000	2.937	4052.5	4640.0	9.6563	1.9581	4052.3	4639.7	9.4690	1.4685	4052.0	4639.4	9.3360
1100	3.168	4257.0	4890.7	9.8458	2.1121	4256.8	4890.4	9.6585	1.5840	4256.5	4890.2	9.5256
1200	3.399	4467.5	5147.5	10.0262	2.2661	4467.2	5147.1	9.8389	1,6996	4467.0	5146.8	9.7060
1300	3.630	4683.2	5409.3	10.1982	2.4201	4683.0	5409.0	10.0110	1.8151	4682.8	5408.8	9.8780
		P = 0.50 N	MPa (151.	86°C)		P = 0.60	MPa (158	3.85°C)	P = 0.80 MPa (170.43°C)			
Sat.	0.3749	2561.2	2748.7	6.8213	0.3157	2567.4	2756.8	6.7600	0.2404	2576.8	2769.1	6.6628
200	0.4249	2642.9	2855.4	7.0592	0,3520	2638.9	2850.1	6.9665	0.2608	2630.6	2839.3	6.8158
250	0.4744	2723.5	2960.7	7.2709	0.3938	2720.9	2957.2	7.1816	0.2931	2715.5	2950.0	7.0384
300	0.5226	2802.9	3064.2	7.4599	0.4344	2801.0	3061.6	7.3724	0.3241	2797.2	3056.5	7.2328
350	0.5701	2882.6	3167.7	7.6329	0.4742	2881.2	3165.7	7.5464	0.3544	2878.2	3161.7	7.4089
400	0.6173	2963.2	3271.9	7.7938	0.5137	2962.1	3270.3	7.7079	0.3843	2959.7	3267.1	7.5716
500	0.7109	3128.4	3483.9	8.0873	0.5920	3127.6	3482.8	8.0021	0.4433	3126.0	3480.6	7.8673
600	0.8041	3299.6	3701.7	7.3522	0.6697	3299.1	3700.9	8.2674	0.5018	3297.9	3699.4	8.1333
700	0.8969	3477.5	3925.9	8.5952	0.7472	3477.0	3925.3	8.5107	0.5601	3476.2	3924.2	8.3770
800	0.9896	3662.1	4156.9	8.8211	0.8245	3661.8	4156.5	8.7367	0.6181	3661.1	4155.6	8.6033
900	1.0822	3853.6	4394.7	9.0329	0.9017	3853.4	4394.4	8.9486	0.6761	3852.8	4393.7	8.8153
1000	1.1747	4051.8	4639.1	9.2328	0.9788	4051.5	4638.8	9.1485	0.7340	4051.0	4638.2	9.0153
1100	1.2672	4256.3	4889.9	9.4224	1.0559	4256.1	4889.6	9.3381	0.7919	4255.6	4889.1	9.2050
1200	1.3596	4466.8	5146.6	9.6029	1.1330	4466.5	5146.3	9.5185	0.8497	4466.1	5145.9	9.3855
1300	1.4521	4682.5	5408.6	9.7749	1.2101	4682.3	5408.3	9.6906	0.9076	4681.8	5407.9	9.5575

Fonte:

http://sistemas.eel.usp.br/docentes/arquivos/8554681/00000000/Tabelas depropriedades termodinamicas (agua).pdf acesso em 02/07/2015.

FOLHA DE RASCUNHO